← Case Studies

Meconet: 50% Increase in Operating Time in 5 Months (Part 1)

time clock 7 min read • February 18, 2020 meconet building in tallinn
viktorija trubaciute profile evocon

Viktorija Trubaciute

UX Designer & Researcher

Meconet is one of those companies whose products you use many times per day without knowing it. Meconet is producing demanding metal components: springs, stampings, deep drawn products and qualified assembly works. These parts are used, for example, in electrical switches, locking devices, medicine dispensers, cars and heavy vehicles.

Meconet is a family-owned company that operates in four countries (Finland, Sweden, Estonia and Russia) and is proud to span three centuries, having established in 1896.

Challenges: Machine Utilisation and Reactive Maintenance

In general, Meconet’s Estonian factory was doing well. Capable equipment, skilled staff and decades of experience ensured competitive pricing, and the orders were flowing in.

That said, success did not hinder Meconet from looking for areas of improvement. One of those areas became apparent once you spent more time on the shop floor: machine utilisation. Factory’s production engineer, whom we were interviewing, noted that some machines were scheduled to run but were sitting idle. If you asked why, you heard as many explanations as there were people. While all of them were valid, it was difficult to say which ones were the most important.

Another issue that stood out was repetitive complaints. Operators were pointing out various issues from broken equipment to missing tools but did not feel that their concerns were addressed quickly, even though the maintenance team was busy. The reason for that was that the maintenance team didn’t have a prioritised list of issues. They were simply solving the most recent or most urgent ones. In other words, they were doing reactive maintenance.

It was becoming clear they had to focus and solve the problems one by one, starting from those that caused the biggest losses in productivity. So, they needed to prioritise the list of problems. But how? Meconet needed to know which issues affected which machines and how significant that impact was. Meconet needed to collect production data.

Next Challenge: Collecting Production Data

Some of Meconet’s personnel had experience in collecting production data, using the classic approach: printing out a blank spreadsheet and standing next to the machine with a stopwatch, filling in information about every step. This time they videotaped the full shift of a machine and later viewed the recording and noted down every action together with its duration.

While being a sure method to learn what was happening on the shop floor, it had obvious flaws, too (for more details, read The top 8 OEE calculation mistakes in manufacturing). The time required to collect this data was the biggest of them. It limited the amount of production data they could collect: only one machine at a time, only for one shift, and only once or twice a week.

But what if they could have the data for all machines, all shifts, every day? That was the promise of data automation, a popular topic among manufacturers today.

In 2019, there were already several machine downtime tracking solutions on the market. Rather than researching features and pricing of various options, Meconet tried something else. They found another manufacturing company with similar equipment and processes. This company, Torm Metall, had a production monitoring solution in place and was happy to recommend it. Even better, that solution had a free trial.

Meconet Implements Evocon to Monitor Production

And so Meconet began the free trial of the OEE software provided by Evocon. At first, they were considering employing a person to deal with the Evocon system: installing and configuring the software, analysing data, extracting reports. They expected this to be a full-time job. Eventually, Meconet decided to wait and see until the end of the trial. The production engineer took on the setting up and using Evocon. He believed he was the right person to have first-hand access to production data since he was the one in charge of making machines run smoothly.

To their surprise, Evocon was so quick to set up and easy to use that they did not need to do any hiring. “It’s completely hassle-free,” told us the production engineer. “I’m just doing it every morning on Monday to check data on OEE, cycle times and machine downtime. 1 hour maximum”. After studying the data, he would print out several reports from Evocon and pin them on the board for everyone to see.

That was the board we were standing in front of, next to a big TV screen, displaying Evocon’s factory overview screen.

screen showing production data in meconet factories

It was also where the operators met every Tuesday to discuss problems of the previous week and review goals for the current one. On the week of our visit, the focus was on making sure that operators comment all machine downtime reasons (why all? Learn more about it here). The aim was to understand availability losses in their production process. The printouts highlighted the machines that still had some uncommented downtime.

Production Monitoring Results

The practice of a weekly review of production KPI-s was established once the trial period was over and Meconet installed Evocon on several more machines.

The operators were sceptical of these efforts in the beginning. They were not sure how these meetings could change the reality of the shop floor.

Focusing on top issues as a team

But it did. Production data brought out the poorest performing machines and the most common downtime reasons. Meconet prioritised them by effort and effect (for more details, read How to perform root cause analysis) and assigned them to the people responsible. Problem-solving became a team effort, involving shop floor, maintenance department and the office. Limiting attention to only a few issues at a time allowed everyone to work together and fix problems rapidly.

Targeting efforts, justifying investments and sharing best practices

Things started to change on the shop floor. The impact of the maintenance team increased because they focused their work on what was needed most. Some equipment was replaced or bought new: the investment was easy to justify now that you could calculate exactly how much downtime it could help avoid. Operators learned from each other, borrowing techniques to increase the OEE of their machines.

Production data as an enabler of change

While the driver of the improvement was willingness and discipline, the enabler was data. With Evocon, Meconet had production data that was objective, precise, detailed and visualised in a way that made it easy to find problems. “The main achievement of Evocon is that we finally have data that we can trust and use,” said the production engineer.

An illustration of how data helped to identify opportunities for improvement was the Raw Material Replenishment issue, which we will describe here in more detail.

“Raw Material Replenishment” Issue

As Meconet accumulated one month’s worth of production data on one of their machines, “Raw Material Replenishment” unexpectedly came up on top of the list of operational downtime.

production data shows raw material replenishment issue

The reason for it wasn’t clear, so they dug deeper. Root cause analysis revealed that some operators replenished material much faster than the others.

comparison of raw material replenishment time

The last step was to go down to the shop floor to observe the difference. Soon after that, they had the answer. Some operators were preparing everything before the machine ran out of material, thus saving time on the replenishment procedure itself.

The solution was simple. The fastest operators introduced their way to the rest, speeding up the average replenishment time by 30%.

time savings after sharing best practice

It is worth mentioning that nobody judged operators’ performance during this (or any other) project. The real issue was communication.

Ongoing Improvements in Availability

The improvement mentioned above was only one of the many that followed. The chart of most important downtime reasons kept evolving, new issues climbing to the top of the list. This happened because the operators were adding comments to the machine stops more and more actively. That way, previously “uncommented stops” were becoming defined and thus – actionable.

Understanding machine downtime in more detail

On the day of our interview, the biggest problems were Tool change and Machinery breakdown. To understand machinery breakdown, it was no longer enough to have stops commented. So, Meconet team started the initiative of adding extra notes to every stop, to explain why that particular breakdown happened.

Indeed, Meconet used the best practices of defining machine downtime reasons to the fullest.

The production engineer told us that without the data, their priority list would have been different, and some issues wouldn’t have been on the list at all. He explained how he spotted a pattern of frequently alternating yellow and green colours on Evocon’s Shift View. He wouldn’t have noticed it without Evocon software, because the machine wasn’t being idle.

This led him to find out that much of the performance loss on that machine was due to the completed product not being taken away immediately. The solution was to buy a rotating robot to move the finished parts aside automatically.

Operating Time: +50%

As issues were tackled one by one, the overall picture kept getting better.

In just five months, Meconet increased the productive work time from 24% to 36%, which is a 50% improvement. And this is only the beginning.

When we asked the production engineer, what he would do differently, if he could do this project all over again, he didn’t need time to think. “I would do it sooner and involve more people.”

production data shows productivity increase in meconet

Next Steps

After the successful launch of production monitoring and live OEE data tracking in the Estonian factory, Meconet’s other factory in Vantaa, Finland, implemented Evocon as a start to their improvement journey.

We will cover their experience and results in the second part of Meconet’s case study.